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Parabolic partial differential equations used in chemical engineering for the description of mass
transport and heat transfer and analogous relationships derived in stochastic processes theory
are given. A standard transformation procedure is applied, allowing these relations to be generally
written in curvilinear coordinates and particular expressions for cylindrical and spherical co-
ordinates to be derived. The relation between the probability density for the position of a dis-
cernible particle and the concentration of a set of such particles is discussed.

Previously' it was demonstrated that diffusion equations can be written in alternative
ways following from the application of the stochastic approach. The differences
between the ways of expression have been shown2 to follow from the different
definitions of the stochastic integral3'4. It has also been suggested' that in these
forms, unconventional in chemical engineering, the equations can be used to des-
cribe some processes where the "classical" diffusion equation faiJs.

In the present paper, the standard mathematical procedure5'6 enabling the rela-
tions discussed to be written in curvilinear coordinates will be used. For this, the
equations given previously2 will be first presented in a simplified form. (References
to equations in refs"2 will be denoted as (K. I), where K is the equation number
in the corresponding paper and I is the reference number in the list of references
appended to the present paper.)

The unifying expression for all the above-mentioned relations can be written
in the form of a differential balance of a scalar f which is generally a function of the
position vector x and time t,

0f(x, t)/at + V. q(x, t) = 0,

where vector q is the flux intensity of quantityf. The equation does not involve the
source term — this is a simplification adopted previously'. From the chemical en-
gineering point of view, f can be the volume concentration of a substance component,
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enthalpy or temperature. From the "probabilistic" aspect, f is the probability density
(conditional or unconditional) describing the position of a randomly moving particle
in space and time. The definition of the last-mentioned quantity is given by Eq.
(13.1); the relations between the other quantities are represented by Eqs (19.1),
(20.1) and (24.1). All of them are linear transformations independent of the variables
x and t, so that Eq. (1) and relations that will be given for the general quantity f
can readily be written for particular cases.

The relation for the flux intensity q in principle depends on the way the stochastic
integral is.defined2; Ito's definition leads to the form

q(x, t) = v'(x, t)f(x, t) — (1/2)V . [B(x, t)f(x, t)] , (2)

where B is a second-rank tensor (the diffusion tensor) and v' is the so-called drift
velocity. The first right-hand term in this equation describes the motion of the scalar
quantity with the "environment" by which it is entrained whereas the second term
characterizes the relative motion of the quantity f with respect to this environment.
We will assume that the B tensor components do not explicitly depend on function f
and that the tensor is symmetric.

The physical meaning of the terms in Eq. (2) as well as the justification of the simpli-
fying assumptions have been discussed"2. Substitution of Eq. (2) in Eq. (1) leads

to the Kolmogorov forward diffusion equation4 whose solution is the f(x, t) func-
tion (see Eqs (18.1)and (25.2)). In ref.', examples are given of application of this
equation in the description of chemical engineering stirring processes7'8.

The "classical" form of the diffusion equation differs in the position of the dif-
ferential operator V in the diffusion term,

q(x, t) = vT(x, t)f(x, t) — (1/2) B(x, t) . [Vf(x, t)] . (3)

This approach is most widely used in chemical engineering (see, e.g., Eqs (4.1) and

(36.2)). The equation emerging from the substitution of Eq. (3)in Eq. (1) is referred
to as the transport equation.

(Note: as previously2, the notation used is such that operator V acts upon all coef-
ficients standing to the right from it; parentheses indicate the sequence of opera-
tions; and the dot denotes the scalar (more precisely: internal) product of the objects
between which it stands.)

In order to make it possible to write the relation for the flux intensity of a scalar
quantity in Stratonovich's form3'4'9, we first introduce the tensor G(x, t), which
can be regarded as the "root" of the diffusion tensor, the two being interrelated
by

G(x, t) . G(x, t) = B(x, t). (4)
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Here G is the tensor transposed with respect to C (see Eq. (26.2)). This tensor
occurs in the "randomizing" term of the stochastic differential equations (6.2),
(16.2) and (21.2) and can be referred to as the stochastic tensor. Applying the di-
vergence operation to Eq. (4) and rearranging we obtain

V. B(x, t) = j(x, t) + k(x, t), (5a)
where

j(x, t) = [G(x, t) . V] . G(x, t) (5b)

k(x, t) = G(x, t) . [V . G(x, t)] . (5c)

Vectors j and k are introduced for brevity of the expression. The former has been
defined by Eq. (15.2) and called the semidiffusion flux.

The flux intensity of a scalar quantity in Stratonovich's form is then given by the
expression

q(x, t) = vS(x, t)f(x, t) — (1/2) G(x, t) . [V . G(x, t)f(x, t)] (6)

which, inserted in Eq. (1), gives the corresponding diffusion equation (see Eq. (29.2)).
The drift velocities in Eqs (2), (3) and (6) are interrelated2 through

vT(x, t) = v'(x, t) — j(x, t) = vS(x, t) — (1/2)j(x, t) (7)

(see Eq. (22.2)). The second relation can be used to mutually uniquely transform
the relations for the flux intensity in Ito's and Stratonovich's approaches, i.e., Eqs
(2) and (6). Transformation between the transport equation (3) and the two other
expressions is only possible if in addition, the condition

j(x, t) = k(x, t) (8)

holds true. If this is not the case, the term V . {[j(x, t) — k(x, t)]f(x, t)}, which does
not appear in the "classical" diffusion equation, must be added to the right-hand
side of Eq. (3). It can be demonstrated that from the mathematical point of view,
all of the equations give then identical solutions (for identical initial and boundary
conditions). The chemical engineer's problem is, which of the drift velocities in
Eq. (7) to identify with the actual fluid velocity1 . The answer does not seem
straightforward, and so it is convenient to have equations for all the alternatives
available.

For the case of orthogonal Cartesian coordinates the relations have been presented
in ref.2 (Eqs (25a.2), (29a.2) and (31a.2)). With regard to the fact that many chemical
engineering equipment components possess the cylindrical symmetry (or, less fre-
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quently, spherical symmetry), the corresponding equations will be given in these
coordinate systems as well. The transformation procedure suggested, however,
enables the relations to be written in curvilinear coordinates of a general type.

THEORETICAL

Diffusion Equations in Curvilinear Coordinates

Mathematical apparatus requisite for the transformation of relations which involve
tensors of different ranks (i.e., including scalars and vectors) is available5'6"°. It
allows equations to be written in any number of dimensions. Some notations will
be first introduced. The Cartesian orthogonal coordinates of the position vector x
in the preceding equations will be denoted x (1 = 1, 2, ...), the general curvilinear
coordinates will be denoted z1. Basis vectors will be denoted e in the case of Car-
tesian coordinates and g or gt in the general case. Einstein's convention will
be adopted, i.e. the summation sign with respect to a subscript or superscript occur-
ring twice in the expression will be omitted. For instance, vector x in Cartesian or
curvilinear coordinates will be written as

x = xe = z1g = zgt
instead of

x = = >ztg.

(The superscripts denote the so-called contravariant coordinates of the vector,
subscripts denote covariant coordinates. In Cartesian coordinates they are identical
and we do not distinguish between them.)

Furthermore, assume that transformation equations for expressing Cartesian
orthogonal coordinates in curvilinear coordinate terms are given:

x, = x.(z1, z2, ...) (i = 1, 2, ...) . (9)

In this transformation, the basis vectors are functions of the coordinates and thus,
they change on differentiation with respect to the coordinates. It can be demon-
strated that Eq. (1) for general curvilinear coordinates can be written as

(af/at) + (1/\/g) [a(%Jgq')/azt] = 0 (q = g,q1), (Jo)

where g is the metric tensor determinant; its root can be calculated directly as the
absolute value of the Jacobian of transformation (9):
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.Jg = det (ax1/az')l (11)

(The arguments of functionsf and q are omitted for brevity).
Before going on, it is appropriate to define the metric tensor components. Its

covariant coordinates obey the relation

= g, . g = (XmIt3Z1) (t3XmI3Z)

so that, taking into account Eq. (ii), we have

g = det (g) = [det (ax/3z)]2 . (12)

For so-called mixed coordinates the expressions are simple,

gi;gi.g.5i (5=1 for i=j, 5=O for ij).
The contravariant components of the metric tensor can be found by means of the

relation
= g . gJ = h/g

where h is the cofactor of element in the metric tensor determinant, i.e. the
determinant formed from it by leaving out elements of the i-th row and the j-th
column.

The changes in the basis vectors during their differentiation with respect to the
curvilinear coordinates can be expressed by means of Christoffel's symbols, which
can be calculated by using the formulas

= (gmk/2) [(agJ/0zi) + (8gk/3z') — (ag/z")]

these quantities obey the relations

I' F7.; I'ik = (3 in .Jg/zk). (13)

Now, we are ready to write the flux intensity vecor in all the variants. Before this,
however, we rewrite Eq. (4) in the components:

B = Bgg" = GGgg' = G-'GJgg"; (14)

hence, it is convenient to regard the B tensor components as mixed. It can be de-
monstrated that this relation also holds for coordinates B, i.e., that tensor B is
symmetric.
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The flux intensity vector in Ito's form can be written as

q {vif — ![ /g;f) — Bf'f]} gk qgk (15)

In the "transport" form, this same vector can be written in a considerably simpler
manner:

q = [vf — (1/2) B(3f/3z)] gk qgk; (16)

this, however, is only valid if condition (8) is met. This condition can be presented
in curvilinear coordinates if vectors jand k defined by Eqs (5) are expressed in these
coordinates.

j = jkg G[(0GkJ/tz) — Gmjf' — Gkmf'] gk (17a)

k = kg" GkJ[(oG/aZ) + Gmff + Gimf;c] gk (17b)

and one is subtracted from the other; on rearrangement we obtain

(J — k),, = (Gi)2 [a(Gkf/G)/aZ'] — 2GkjGtmpm —

— B,,I' — B.'T,,1 = 0 (k = 1, 2, ...) (18)

In this rearrangement, the first of Eqs (13) and Eq. (14) were taken into account.
In the Stratonovich form, G tensor components must be employed:

q = {vf — GkJ +
GtmrJ]}

gk = qgk (19)

To make it possible to substitute from these relations in Eq. (10), the rule q' =
must be applied. So, for instance, the diffusion equation is finally obtained in the
transport form

+ - [..j'gg" (vTf — !B = 0. (20)

The two remaining relations can be written likewise.
One important fact must be drawn attention to. If the function f(x, t) has the

meaning of volume concentration, enthalpy or temperature, it is an absolute scalar,
which does not change during the transformation10. If f(x, t) = p(x, t) is the pro-
bability density, then the transformation

p(', z2, ...; t) = p(x1, x2, ...; t) jg =f(z', z2, ...; t) g (21)
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holds true11; here Jg is the Jacobian of the transformation (Eq. (Li)) and p is the
probability density in the curvilinear coordinates. For instance, substituting p/Jg
for function f in Eq. (15) and also inserting this term in Eq. (10) and rearranging,
we obtain

+ —--
{gik [2vP

+ Bf;rp - ____ =0. (22)

The alternative equations can be rearranged likewise.

The Use of Orthogonal Coordinates

Orthogonal coordinates of a metric tensor are defined by the relations5

(ij)
stating that elements of the metrix tensor matrix save the diagonal ones are zeroes.
The use of orthogonal coordinates simplifies the above relations considerably while
it does not detract seriously from their practical value. All coordinate systems
employed in chemical engineering are orthogonal.

In place of the metric tensor coordinates and determinant it is convenient to
introduce the quantities

(i=1,2,...), e=,jg=fle (23)

where is the multiplication symbol. In these and the following relations, the sum-

mation convention will no more be adhered to and all summations will be fully
indicated.

Furthermore, instead of the covariant and contravariant coordinates of vectors
and tensors, so-called physical coordinates can be introduced by the relations

d=a/e=ae1 (1=1,2,...)
= A13/(ee) = = A.;e/e (i,j = 1,2, ...)

Christoffel's symbols are also simplified considerably:

= 0 (i J k i); I' = —(e/e)(ae/az) (J i)

JTk = 5 In e/5z" (i k); f'j = S In e/Sz.
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For a simplification of the notation, we introduce the symbol

e0z (i = 1, 2, ...).

Using these simplifications, Eq. (1) takes the form

01/at + >jek/e) 8[k(e/ek)]/8s" = 0 (24)

The corresponding flux intensity vector components in Ito's, transport, and Strato-
novich's approaches are

= - [!L-(j - j
Oinei]

(25)
2iLeekOs \ e j Os

'kf — fiikt (26)2 Os

= - jkj T [!A- (ô L) +2 tiLe Os\ ee
+ + 8 e -a

lnei]}
(27)

respectively.
For Eq. (26) to be valid, condition (8) must be met; this condition will be written

in the form

Jk — dk — 2 Okf (
8 lne — 0 in

ei) —ji*j \ Os

— [& 0:i + jk —--. in
(e/eiek)]

= 0. (28)

The term dk involves derivatives of the G tensor coordinates; apparently, it can be
expressed in various ways:

dk = >(OJ8OkJ/8s — CkJ8Of/8s) (29a)i*k j

dk = >CkJCIJ8 in (OkJ/CJ)/8s (29b)
i*k j

dk = 0(OkJ/OJ)/0s1 (29c)i*k j
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Now we shall show some examples of substitution of the flux intensity vector in
Eq. (24). For the "transport" equation we obtain

+ - ( — >ik = 0. (30)k eas ek 2ek i SJ

The corresponding relation for the probability density p in Ito's approach, taking
into account Eqs (21) and (23), is

k ek 2 L ek az"

— ik (lnek + ôln e1 — —--. (j = . (31)
eek \ 3z' az" j \ eekJJJ

Now, the relations derived will be employed for setting up equations in the concrete
coordinates.

a) Cartesian coordinates. In this simplest type of coordinates, the transformation
relations = x, (i = 1, 2, 3) are formally valid; from these we have e = e = 1,
ast = 3xj, fl, = 0 for all i, j, k. The diffusion equations for coordinates of this
type have been presented previously2 (Eqs (25a.2), (29a.2), (31a.2)). Condition (28)
takes on the form

(iJ '_CkJ—-i)=o (iek;k=1,2,3) (32)
i,j=1 \ X1

This condition can be, naturally, expressed in any form following from Eq. (29).

b) Cylindrical coordinates. Cylindrical coordinates are given by the transformation
equations

x1 = cos ; x2 = z1 sin z2 ; x3 =

and we have

e1=e3=l; e2—e——z';
as'=az'; as2=z1az2; as3=az3.

Here, polar coordinates are labelled by using superscripts, which contributes to
brevity; the conventional symbols are r (= z1), (= z2) and z (= z3). Similarly, the
physical vector or tensor coordinates will be written as I3 (= Vr), V3 (= vi), 12
( Gr,t) etc.
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In these coordinates, Eq. (1) is

al/at + 1/z1 + Ea4/as1 = 0. (33)

In this equation, expressions for the flux intensity vector coordinates can be inserted;
these are given by the system of equations for all the approaches considered,

= if — [m + — &2)f/z] = ff — =

= If — +{m + [ i — (Ci 1C22 — C12C21)] f/z'} (34a)

= 132f — (1/2) (m'2 + 212f/z1) — (1/2)m
= 13f — (1/2) (m + 12f/z') (34b)

= l3f — (1/2)(m + B13f/z ) = — (1/2)m =

i3f — (1/2){m + [13 — (C22C31 — } . (34c)

The following symbols were used in these equations:

= — (f); m' = -;j=i a 1=1 0s

= Cj- (Cf). (35)
i,j=i 8s

As an example, the transport equation in the conventional notation is

at r or r 019 2 L r Or r2 019 r

+ (Brr + + Brz + (Brt + + B +
Or \ Or r 019 Oz) r019 \ Or r 319 OzJ

+ (Brz + + B =0. (36)
Oz\ Or r 819 OzJj

The equation for the probability density p in cylindrical coordinates is obtained by
substituting for function f from the relation p = fr.
c) Spherical coordinates. In these coordinates, the following transformations hold

true:
x1 = zt sin z2 cos z3 ; x2 = zt sin z2 sin z3 ; x3 = cos
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wherefrom the relations

e1 = 1, e2 = e3 = z1 sin z2, e = (zt)2 sin z2

3s' = az', 3s2 z'az2, & = zt sin z2?iz3

follow. The conventional symbols for spherical coordinates are r (= z'), 19 (= z)
and ( (= z3).

Eq. (1)in spherical coordinates is

af/at + (1/z1) (2 + cotg z22) +a/as' = 0. (37)

and the q vector coordinates are

= f— (1/2)[rn'1 + (2ñ11 — B22 — B33 + 12cotgz2)f/z']
= — (1/2) mT (38a)

= I3f— (1/2){rn + [312 + cotgz2(22 — 33)]f/z'} =
= if — (1/2) m (38b)

= — (1/2) [m + (313 ± 223 cotg z2)f/z'] =
= I3f — (1/2) m (38c)

(expressions for m' and mT are given by Eqs (35)). Explicit relations in Stratonovich's
approach are very complex in this case.

Finally, the transport equation in spherical coordinates is

+ - (rvf) + _-L- [ (sin19vf) + -
(vf)]

-
at r ar rsin19 ô19

— LI -- [r (Brr + + +
2 r2 ar L \ ar r r 9 ajj

+
1 a [. aj + B aj + Bq, t\1 +

r sin 19 a19 L \ a r a& r sin 19 ajj

+ 1 [a
(Brq, + + B = 0. (39)

r sin L \ ar r 319 r sin 19 3JJJ

The probability density in spherical coordinates is given by the equation p, =Jr2.
sin 19.
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DISCUSSION

Expressing diffusion equations in curvilinear coordinates requires some conclusions
made in the previous papers to be refined or generalized. This concerns particularly
the validity of condition (32.2),

GJ(GkJ/aXI) = GkJ(aGJ/ox)

(no summation!), which is a prerequisite for the conventional transport diffusion
equation form. This condition was used in an attempt at finding the analytical solu-
tion for the G tensor coordinates. This condition is correct in Cartesian coordinates
but it is not general even in this case. General relations are given in the present paper.
The vector form of the condition enabling the classical diffusion equation (3) to be
written is given by relation (8). Furthermore, this condition is expressed by Eq. (18)
for curvilinear coordinates, Eq. (28) for orthogonal curvilinear coordinates, and
Eq. (32) for Cartesian coordinates. Attempts at finding the general analytical solution
of these relations, however, failed.

Additional refinement concerns the relation between the substance component
coiccentration and the probability density for the position of a particle of this com-
ponent, or the temperature and the probability density (see Eqs (20.1) and (24.1)).
The two relations can be formally described by the equation f(x. t) kp(x, t),
where f is the concentration or temperature and k is a proportionality constant.
These equations are only valid in Cartesian coordinates.

The probability density p in curvilinear coordinates is generally defined by the
relation

p(z', z2, z3; t) = ô3F(z', z2, z3; t)/z'az20z3

where F P{Z'(t) zt; Z2(i) z; Z3(t) z3} is the corresponding distribution
function and Z1(t) is the coordinate of the random motion of the particle at time
(compare Eq. (13.1)). On the other hand, for instance, the substance component
concentration in a small volume AV can be regarded as a quantity proportional
to the probability that at time t the particle will occur in this volume, i.e.

QA(LV, t) = MA p(z', z2, z3; t) fldz/AV

where MA is the total mass of the substance component; the volume in curvilinear
coordinates is5

EV=

We assume that the centre of gravity of the volume considered is a point whose
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coordinates are z1, z2, z3}, and in the limit we obtain

lim QA(AV, t) = MApZ(zt, z2, z3; t) fldz1/(,Jg JJdz) = MAp/%Jg

which — except for the multiplicative constant — is identical with Eq. (21). Ac-
cording to Eq. (11), Jg is the Jacobian of the transformation; only in the case of
orthogonal Cartesian coordinates it equals unity. The constant MA vanishes from
the diffusion equations by reduction.

The diffusion equations for intensive quantities, used in chemical engineering,
thus in curvilinear coordinates have a form different from that of the "probabilistic"
diffusion equations also for this reason.

In conclusion let us make some remarks on the backward Kolmogorov equations.
These relations describe the development of the stochastic process in "the past", i.e.
at time preceding the given time moment, in contrast to the forward equations
describing the process development in the "future", i.e. starting from the given
time moment (see, e.g., refs3'4). Backward equations are not very frequent in chemical
engineering. Problems associated with the fluid residence time distribution may
be an exception. The Kolmogorov equations are usually written for transitive
probability densities

_________ 1 2f(z; t f y; z) = — 1 2 3 P{Z (t) � z ; Z (t) � z2z 3z z

Z3(t) � z3 Z'(t) = y'; Z2(t) = y2; Z3(i) = y3}, (40)

where P is the probability related with the position of the randomly moving particle
at time t if at some preceding time r this particle occurred in a point whose coordinates

are (yt, y2, y3) (see Eq. (13.1)).
The backward Kolmogorov equation can be written as3'4

f/är + v'(y, r) . Vf + (1/2) B(y, r) : Vf = 0 (41)

where the operator V2 = VV is the dyadic product of two differential operators and
the column denotes double scalar product. The operator subscript y indicates that
function f is differentiated with respect to coordinates y. The forward Kolmogorov
equation is adjoined to Eq. (41); it is obtained by substituting in Eq. (1) from Eq. (3)
taking into account Eq. (21):

af/ot + V. [v'(z, t)f//g] — (1/2) V. [Vi. B(z, t)f/,.Jg] = 0. (42)

In this case, the coefficients of the equations are functions of the variables z, and
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the differentiation is with respect to these variables. The fundamental solutions of
the two relations are identical'2.

Equation (41) is in Ito's form. Taking into account Eqs (7) and (5)and rearranging,
the backward equation can be obtained in Stratonovich's form as3

f/ôr + VS(y, r) . + (1/2) [(G(y, t). v) . G(y, t)] . (Vf) = 0. (43)

The transport equation can be analogously written as

f1/&r + vT(y, ) . + (1/2) (j — k) . V1,f + (1/2) V7. [B(y, -r) . V7f] = 0. (44)

This equation also simplifies if condition (8) is valid. Equations (41), (43) and (44)
hold for a general scalar function f(y, -r) as discussed at the beginning of the present
treatment, because as follows from Eq. (40) — function f does not change on
transformation of vector y.

Equation (41) written in curvilinear coordinates (adhering again to the Einstein
convention concerning the omitting of the summation signs) is

+ g + B ( a2 — -1 = . (45)
L Ôy' 2 \y1öy mjj

All coefficients in this equation, i.e. gUi, v, B and f' are generally functions of
coordinates y1 and time -r. The adjoined forward equation is simply obtained by
writing f instead of p in Eq. (22). Furthermore, using the product differentiation
rule we express the last term of that equation as

[gzi
± (Bft)] =

02
(glkBi;f) — — [(Bf)

gik]OzOz Oz L

and make use of the Ricci proposition concerning the differentiation of metric tensor
coordinates1 0,

Og"/0z1 + gmlT,, + glmf = 0.

In this manner we arive at the final relation

it + - (g11vf) - ±
(g11

- (lkif) =0. (46)

All coefficients in this equation are identical with those in Eq. (45) but they are func-
tions of coordinates z1 and time t. It is clear that the equations are adjoined12. This
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will not be true if the solution of the equations is concentration, or temperature,
hence, an absolute scalar.

Relations for the probability density have been obtained9; general expressions
for the transport equation, however, are not commonly given in chemical engineering
monographs6'13. They generally enable the propagation of a substance component
in nonhomogeneous anisotropic media to be described. They can also be used to
obtain simpler relations in a straightforward manner. For instance, for unmoving
medium with a constant scalar diffusion coefficient D (vT = 0, B = 2D1 where I is
the identity tensor) the well-known "transport" equation in polar coordinates holds
true (the axial coordinate is not considered):

(47)3t r 3r r2 2)

The analogous forward equation in Ito's form for the transitive probability density is

1 321
(48)L0r2 r r2 0,92J

and the adjoined backward equation is

+ D (L + 1 + (49)e 2J
where f = ft(r, t Q, cL; -r) = fr.

Thus the "transport" equation (47) is not identical with the backward diffusion
equation (49) — in this respect Feller in his monograph14 is wrong.

CONCLUSIONS

From the considerations, assumptions and relationships, written in this paper one
can draw the following conclusions:

1. Diffusion equations in Ito, Stratonovich and transport form previously2
written are expressed in curvilinear coordinates. General expressions for transport
equation in cylindrical and spherical coordinates are presented.

2. The formulation of general conditions (8) enabled us to write the transport
equation in a form common in chemical engineering literature.

3. We succeeded to point out that a difference exists between coordinate trans-
formation of component concentration or temperature and coordinate transforma-
tion of probability density.
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SYMBOLS

B diffusion tensor
D diffusivity
e basis vector in Cartesian coordinates
e1 transformation coefficient (e1 =I scalar quantity (function)

transitive probability density
G stochastic tensor
g metric tensor determinant

g basis vector in curvilinear coordinates

g1 metric tensor coordinate
j vector defined by Eq. (5) ("semidiffusion" flux)
k vector defined by Eq. (5)
MA mass of component A

probability density
q flux intensity of scalar quantity!
r radial coordinate

time
V volume
v medium velocity
x position vector

Cartesian coordinate of vector x
y position vector (with respect to moment t)

curvilinear coordinate of vector y
Z' curvilinear position coordinate (random function of time)

axial coordinate
z position vector (with respect to time t)

curvilinear coordinate of vector z (or x)
angular coordinate (with respect to time )

F Christoffel's symbol
9 angular coordinate (with respect to time t)

radial coordinate (with respect to time r)
density of component A
time moment preceding time
spherical coordinate

Subscripts and superscripts

related to Ito's approach
vS related to Stratonovich's approach
vT related to the "transport" approach

contravariant coordinate of vector v
v covariant coordinate of vector V

physical coordinate of vector V
contravariant coordinate of tensor A
covariant coordinate of tensor A
mixed coordinate of tensor A

4j physical coordinate of tensor A
tensor transposed to tensor A
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